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Abstract The kinetics of gas-phase reactions, including

pressure-dependent weak collision and non-equilibrium

effects, can be modelled using a master equation. In this

paper, we address the practical computational problem of

finding solutions to such kinetic master equations. The

mathematical structure of the master equation can be uti-

lised to develop a number of specialised numerical tech-

niques that are capable of solving the master equation in the

presence of difficult numerics and for large problems. The

former is important for modelling low temperature and

pressure systems, and the latter is important for modelling

the large networks of isomerising species common in

combustion chemistry applications. We focus on numerical

methods that exhibit particular practical use because of their

robust nature or scalability to many isomers, or both. Recent

developments in linear-scaling methods are highlighted.

Keywords Master equation � Multi-well �
Energy grained � Numerical integration �
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1 Introduction

The solution of the unimolecular master equation (ME) [1]

and its reversible isomerisation and bimolecular extensions

is a challenging numerical problem. Developing robust and

general methods for computing the kinetic behaviour of

such reactions is driven by the pervasive role they play in

combustion, along with other applications. In this paper, our

purpose is to explore the numerical issues one must face

when solving the ME and thereby simulating the kinetics of

the modelled reactions over a wide range of timescales.

The simple energy-resolved ME is an integral–differ-

ential equation that statistically describes the time evolu-

tion of a population of some reacting species undergoing

irreversible unimolecular reaction while dilute within a

thermal bath gas. It can be written as

opðt; EÞ
ot

¼ x
Z1

0

PðEjE0Þpðt; E0ÞdE0 � ½xþ kðEÞ�pðt; EÞ:

ð1Þ

In this equation, p(t; E) gives the population of the reacting

species at energy E and time t. Collisions of the target

molecule with the bath gas are defined to be occurring at

frequency x. P(E|E0) is a collisional energy transfer (CET)

kernel describing the probability that a molecule initially at

energy E0 is left at energy E after a collision with the bath

gas. The unimolecular reaction of the target molecule is

described by the microscopic (energy resolved) rate con-

stants k(E). The first term on the right of Eq. 1 accounts for

accumulation of population from molecule arriving at

energy E after a collision. The second term accounts for the

fact that a energy transfer is removing population from

energy E, and for reactive loss.

Energy-resolved MEs are not the only types of MEs

used in kinetics. Extending Eq. 1 to be resolved in angular

momentum as well as energy is straight forward. Going the

other way, the relative population of several chemical

species without resolving the non-equilibrium distributions
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within each species has been described using systems of

differential equations for as long as chemical kinetics has

been studied. While the general approaches to solving these

systems of rate equations can be similar, the computational

and numerical effort required is considerably reduced from

that required for the MEs discussed here [2–6].

In practice, solutions to Eq. 1 are found after discreti-

zation. Usually the energy is simply binned into finite

width grains, though other discretizations are possible

[7–9]. Typically the number of grains used is hundreds to

thousands. A detailed discussion of issues involved with

discretization is beyond the scope of this paper. Once the

ME is discretized, Eq. 1 can be written in matrix form as

dpðtÞ
dt
¼ ApðtÞ ð2Þ

where A is a non-symmetric square matrix. It is the solution

of Eq. 2, known as the energy-grained master equation

(EGME), that this article is primarily concerned with. Note

that the solution to Eq. 1 or 2 is only well defined once

some initial population p(0; E) or p(0) (or at some other

time t0) is specified.

The full solution to Eq. 2 is not required to obtain useful

information about the reaction. The smallest (least negative)

eigenvalue of the matrix A, if well separated from the rest of

the spectrum [10], as it usually is, can be equated with the

long-time rate constant of the unimolecular reaction. The

corresponding eigenvector gives the long-time population

distribution, which slowly decays. In 1978, Gaynor et al.

[11] adapted Nesbet’s method for finding the smallest

eigenvalue (and corresponding eigenvector) of a Hamilto-

nian matrix [12] to find the long-time solution to Eq. 1. We

shall discuss this method in more detail in Sect. 4.

The difficulties encountered while solving Eq. 2 are

mostly numerical in nature. The ordinary differential

equation (ODE) described is stiff, describing processes

occurring over a wide range of timescales. As the tem-

perature and pressure of the described system go down

(say, below 1,000 K and atmospheric pressure or lower),

the problem becomes more stiff, leading to greater

numerical difficulties. An in-depth discussion of the origin

and propagation of numerical errors in finite precision

arithmetic—though essential knowledge for any computa-

tional scientist—is beyond the scope of this article. The

authors particularly recommend the book by Higham [13]

for an in-depth coverage of the topic, and the work of

Golub and van Loan [14] for more general algorithmic

implications.

Many MEs can be solved easily and quickly. A very fast

solution to the ME is essential in many applications, such

as parameter fitting to experimental data or embedding ME

results within a larger fluid dynamics simulation. Our focus

here is those MEs that cannot be solved in seconds of

computer time, either due to numerical or size issues. Two

key considerations are whether standard double precision

arithmetic is sufficient to solve the problem, and what is the

scaling of the algorithm used to arrive at the solution.

Many ME solution methods require computer time scaling

with the third power of the system size. To be able to solve

very large problems without requiring months or years of

computer time, we want better scaling than this. We do not

consider the parallelisability of the algorithms.

In this paper, we deal specifically with MEs describing

collisional and reactive processes in the gas phase. A

similar methodology can be applied to reactions of adsor-

bents on solid surfaces, as pioneered by Harrison and co-

workers [15–17]. Many of the considerations described

here apply equally to these recently developed ME

applications.

In Sect. 2, we describe the EGME and some common

extensions beyond the traditional unimolecular reaction

applications. We describe some general approaches to

solving the ME in Sect. 3, then discuss the numerics

involved in solving the irreversible unimolecular reaction

problem in Sect. 4. Sections 5 and 6 discuss how to solve

the ME for multiple-well, reversible isomerisation prob-

lems and including bimolecular channels, respectively.

Important recent developments in scalable solution meth-

ods are presented in Sect. 7, before Sect. 8 concludes.

2 Review of the ME

The ME is well known and described in detail elsewhere

[1, 18–25], so only some brief details will be given here.

2.1 Simple MEs and basic properties

There is an arbitrariness implicit in writing the ME in the

form of Eq. 1, as ‘‘collisions’’ are ill-defined. For some

definition of the collision frequency (often taken as the

hard sphere value scaled by the Lennard-Jones collision

integral X�2;2 [26]) the per-collision probability P(E|E0) is

related to the energy transfer rate constant R(E|E0) by

xPðEjE0Þ ¼ ½M�RðEjE0Þ: ð3Þ

Here, we keep the x and P(E|E0) partitioning, as is com-

mon, for its conceptual simplicity. Note that while one can

take the collision frequency x to be dependent on the

energy E0, it is common to assume a constant collision

frequency over the entire energy range, as we do here.

For a simple binning of p(t; E) into a discrete set p(t), a

number of graining schemes are possible. For example, the

population element pi can be interpreted as the value at the

centre of the ith energy bin, or at one or the other edge, or

as the average over the energy range of the bin. The details
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are unimportant, provided the results are converged with

respect to decreasing the bin width.

Particularly when employing spectral solution methods,

the efficiency and stability of the solution can be improved

by symmetrising the matrix before solving the ME (though

the symmetric form of the ME is not automatically the best

choice [27, 28]). If f is the vector describing the Boltzmann

population of the system (with the same binning as the

vector p), then defining the diagonal matrix S through

Sii ¼ f
�1=2
i ð4Þ

means the similarity transform SAS-1 yields a symmetric

matrix ½SAS�1 ¼ ðSAS�1ÞT�: Transforming the population

vector to Sp returns the EGME to the form of Eq. 2, but

with a symmetric coefficient matrix SAS-1. Once this

transformed problem is solved, the real, observable popu-

lation distributions are given via the reverse transforma-

tion, multiplying by fi
1/2.

At this point we briefly mention a property of the EGME

that is not often recognised. Applying the similarity

transformation that leads to the symmetrised matrix once

more yields the transpose of the asymmetric ME matrix A:

SðSAS�1ÞS�1 ¼ S2AS�2 ¼ AT: ð5Þ

The eigenvectors of AT (the left eigenvectors of A) are the

eigenvectors of A divided by the Boltzmann population

(S2p). This has important implications for numerical

methods, as shall be discussed in Sect. 4.2.

2.2 Isomerising networks

The reaction schemes that can be described within a ME

formulation are not limited to unimolecular reactions.

Systems of reversible unimolecular isomerisations, possi-

bly coupled with unimolecular decomposition, are

increasingly being modelled with ME methods [22, 24, 29–

38]. Because species elements from several different stable

isomers are included, these types of problems are often

known as multi-well MEs.

One possible method to more easily see how large

systems of reversible isomerisation reactions (containing

many isomers) can be modelled with a ME [and to gain a

deeper insight into the process modelled by an equation of

the form of Eq. 2 in a ME context] is to slightly modify

how one thinks about an EGME for a unimolecular prob-

lem. Instead of considering the energy grains as a means to

describe a population of a single species, consider each

energy grain as a unique species. CET processes are then

simply first-order reactions occurring at a rate given by the

product of the collision frequency, the energy grain size

and the appropriate element of the CET matrix, P. From

this point of view, for a gas-phase unimolecular problem

there is one reversible reaction occurring between each

species element and every other species element. Addi-

tionally, for a particular set of species elements (those

corresponding to energies above the reaction threshold)

there are one or more additional first-order reactions

occurring: the dissociation or isomerisation channel being

modelled. The rate constant for each of these reactions is

the appropriate microscopic rate constant.

To model reversible isomerisation, the populations of all

of the isomers need to be tracked. Explicitly tracking the

population of additional isomers is simply a matter of

adding the grained population distribution of each of the

additional isomers to the set of species elements being

modelled. Thus, the total number of species elements is

roughly the several hundred to low thousands for each

species well, multiplied by the number of wells. A sim-

plified case (with only a few energy grains) is represented

in Fig. 1. Considering the energy-grained population dis-

tribution as a set of independent species elements in this

way is a more natural extension of the classical two-level
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Fig. 1 Very simplified representation of the reversible isomerisation

A� B; showing the explicit generalisation of the Lindemann

mechanism. Note that within each isomer each element is reactively

coupled with all others. Lower diagram highlights first-order

processes involving the species element p3.
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Lindemann mechanism to the isomerisation case than is

normally given. Clearly, the ME approach can be extended

to any number of isomers, with the population elements

from each being added to the vector describing the overall

population of the system, p(t).

2.3 Bimolecular reactions

Bimolecular reactions can be modelled with a ME. It is

usual to assume that the bimolecular species are suffi-

ciently well mixed not to require energy-resolved model-

ling, meaning they are incorporated as a single grain in the

population vector p. Equation 2 becomes

dp

dt
¼ Apþ

X
r

pir pjr kr ð6Þ

where now the matrix A describes the linear (first order)

reactions with zero rows and columns corresponding to the

species involved in the bimolecular reaction. The new term

on the right describes the bimolecular reactions, indexed by

r, to and from the energy-grained unimolecular species and

the bimolecular species described by the population ele-

ments pir and pjr with the appropriate rate constants given

by the vectors kr.

This EGME is no longer a linear ODE. Linearity can be

restored by assuming pseudo-first-order conditions, making

one of pir or pjr constant in time. This population grain can be

excluded from p and the additional term on the right of Eq. 6

incorporated into the matrix A, returning the ME to the form

of Eq. 2 [39]. Direct time integration (see Sect. 3.2) can

easily incorporate such bimolecular reactions and has regu-

larly been used for sophisticated but essentially pressure-

independent modelling incorporating such reactions [6, 40,

41]. This remains an open area of investigation. In this work,

we consider only pseudo-first-order bimolecular reactions.

2.4 Drift-determined diffusion

The first term on the right of Eq. 1 describes CET within a

species population and manifests as a dense block in the

ME matrix. One can invoke the diffusion approximation to

model CET as a purely local process, replacing the effect

of the dense discretized P(E|E0) throughX
j

Pijpj � aipi�1 þ bipi þ cipiþ1; ð7Þ

where the constants ai, bi and ci depend on the particulars

of the diffusion approximation and finite difference scheme

used. In terms of the picture presented by the lower part of

Fig. 1, the transfer of population between p1 and p3 is

removed, with a modification of the p2 � p3 � p4 rate

constants to compensate. Green et al. [42] conclude that, of

the various diffusion approximation formulations available,

drift-determined diffusion gave the best results for uni-

molecular MEs. Applying Eq. 7 transforms the A of Eq. 2,

with the dense CET component replaced by a tridiagonal.

In a multi-well ME, in which the ME matrix has a dense

block for CET within each species, the dense blocks are

each replaced by a tridiagonal. We use D for the ME matrix

A with the diffusion approximation applied. As discussed

in Sect. 5.3, the well-defined sparse structure of the diffu-

sion approximation matrix allows both Dv and D-1v to be

calculated very quickly. Both of these operations scale

approximately linearly with the size of the system being

modelled, which shall be important in Sect. 7. While

solving the diffusion version of the ME is clearly an

approximation to the solution of the full ME, this

approximation has proved useful [22, 32, 42–46].

2.5 Two-dimensional (angular momentum resolved)

MEs

The conservation of angular momentum has important

consequences for the calculation of reaction rates and

branching ratios. These are most evident in barrierless

processes. Angular momentum effects can be included in

the ME [1, 24, 25]. One can expect that the effect of

angular momentum conservation is reasonably small, and

strongest at low temperatures [24].

Formulation of the ME problem in this context requires

species to be labelled according to both their total energy

and their total angular momentum. The discretized ME can

still be expressed as in Eq. 2 and many of the methods

discussed in this work are applicable to these ‘‘2D’’ MEs.

In particular, the Nesbet method can be applied to 2D

problems to give the phenomenological rate constant [47]

and the general approaches described in the following

section apply equally. One can apply the diffusion

approximation to 2D MEs to generate a more structured

ME matrix [44, 46], though it is unclear how effective this

approximation is for rotational transitions. The 2D ME can

be reduced to a 1D ME by assuming some particular model

for rotational transitions [1, 48–50]. Another approach is to

use basis functions dependent on both energy and angular

momentum to discretize the ME [9]. Analytic solutions

exist for 2D MEs assuming particular functional forms for

the energy transfer kernel [44, 50–52].

In this work we do not specifically treat 2D MEs, dis-

cretizing over energy only. For more details we refer the

interested reader to the formentioned references.

3 Approaches to the solution

The unimolecular ME can yield far more information that

just the classical unimolecular rate constant and long-time
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population profile. As for any first-order system of differ-

ential equations, Eq. 2 describes the evolution of p(t) for

all times t, once the initial value pð0Þ � p0 is set.

3.1 Spectral solution

The solution of Eq. 2 as a function of time is easily shown

to be

pðtÞ ¼ expðAtÞp0: ð8Þ

Appearing in this solution is the matrix exponential exp(At).

Calculating the matrix exponential has been explored

extensively in the literature, and many approaches exist

[53–55]. Quite a few of these approaches have been trialled

for the case at hand. It has been found that most of the more

sophisticated approaches to calculating either the matrix

exp(At) or the actual desired solution expðAtÞp0 fail in

various ways. One of the more common, well understood

and easily calculated solutions can be obtained as [1]:

pðtÞ ¼
Xn

j¼1

aj expðkjtÞxj; ð9Þ

where kj and xj are the n eigenvalues and eigenvectors of

the n 9 n matrix A:

Axj ¼ kjxj: ð10Þ

The projection coefficients aj used in Eq. 9 are determined

by projecting the initial population p0 onto the set of

eigenvectors so that

p0 ¼
Xn

j¼1

ajxj: ð11Þ

Solution via Eqs. 9 and 11 is a spectral solution to the

EGME, from the term for the set of eigenvalues of a

matrix. A spectral solution has the advantage of requiring

only a single eigendecomposition of the matrix A, and then

a single projection for each initial population of interest.

Coefficients ai to satisfy Eq. 11 are given by the pro-

jection theorem, viz

ai ¼ hp0; xii: ð12Þ

The inner product used in Eq. 12 depends on the

orthogonality of the eigenvectors. The eigenvectors of a

symmetric matrix form an orthogonal set, meaning that if the

matrix is symmetrised before being diagonalised the

required inner product is the normal Euclidean inner product,

hu; vi ¼ uTv: ð13Þ

If the matrix is not symmetrised before being diagonalised

the inner product under which the eigenvectors form an

orthogonal set is the Euclidean inner product weighted by

the inverse of the Boltzmann distribution,

hu; vi ¼ uTS2v: ð14Þ

Similarly, for the eigenvectors of AT (the left eigenvectors

of the unsymmetrised ME matrix) the appropriate inner

product is

hu; vi ¼ uTS�2v: ð15Þ

The interpretation of the smallest eigenvalue of A as the

long-time rate constant is obvious from Eq. 9, with certain

caveats [10, 34]. Changes in p(t) at successively shorter

timescales are controlled by eigenpairs with successively

larger eigenvalues, with contributions from eigenvectors

with significantly smaller eigenvalues remaining

essentially constant. This means that a truncated version

of Eq. 9, with terms involving large eigenvalues discarded,

can yield good approximations to p(t) for all but the

shortest times. Generally, discarding from the expansion

eigenpairs with eigenvalues of greater magnitude than a

cutoff s can successfully model p(t) for a range of times t

satisfying

t� 1=s: ð16Þ

This is an optimistic limit: the smallest t for which a

truncated expansion is accurate may be quite a few orders

of magnitude larger than 1/s.

The structure of eigenvectors corresponding to larger

eigenvalues is less well-known than that of the eigenvector

corresponding to the smallest eigenvalue (though descrip-

tions are available in the literature [28, 56]). In the lower

part of the spectrum these eigenvectors are also broadly

similar to the Boltzmann distribution, decaying exponen-

tially in elements corresponding to high energies. In low

energy grains a number of nodes (sign changes) appear

corresponding to the eigenpair’s position in the spectrum.

That is, x2 has one node, x3 has two nodes, and so on. The

number of eigenvectors of this form is generally about

equal to the number of energy grains below the reaction

threshold. The eigenvectors from the upper part of the

spectrum generally have a ‘‘spike’’ of a single large ele-

ment or a small region of large elements, surrounded by

elements exponentially decreasing in magnitude as one

moves away from the spike. In this region of the spectrum

the spectral density is considerably lower than that around

smaller eigenvalues.

The shape of the eigenvectors is dependent on the

temperature and pressure being modelled. Lower temper-

atures give faster decays for the high energy elements, and

lower pressures increase depletion of population from the

Boltzmann population at long times, clearly evident in x1.

The spread in the magnitudes of the eigenvector elements

is a major source of numerical difficulties in spectral

solutions to the ME [23, 28, 57]. Eigenvector elements

smaller than the computational unit roundoff times the
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123



largest elements cannot be calculated reliably. Yet these

tiny elements often completely dominate the projection

coefficients of Eq. 12.

In certain applications, one can ‘‘scale away’’ this pre-

cision problem by transforming the ME matrix according

the similarity transforms described above. The effect of

these transforms on the eigenvector corresponding to the

long time limit is demonstrated in Fig. 2. However, the

more complicated structure of eigenvectors from higher in

the spectrum means the wide spread of magnitudes cannot

be scaled away globally [27, 28, 57].

One rather heavy-handed remedy is to increase the

numerical precision in which the calculation is performed.

Quadruple precision arithmetic is supported on a range of

computer systems, and this has been used to good effect

[23, 28, 59, 60]. Beyond quadruple precision one can resort

to software arithmetic, such as that implemented in Bai-

ley’s Fortran 90 MPFUN package [61]. Such an approach

can effectively reduce numerical error to negligible levels.

While increasing the precision does not guarantee more

accurate results [13], in practice pathological cases are rare.

Increasing the precision of the calculation comes at the cost

of increasing the computer time required, possibly by many

orders of magnitude [23, 28, 57, 62, 63]. Thus, this

approach is only practical in cases where the ME matrix is

not too large.

3.2 Direct integration

An alternative expression for the solution to the first-order

linear ODE of Eq. 2 is given by explicit integration in time:

pðtÞ ¼ pð0Þ þ
Z t

0

dpðsÞ
ds

ds ¼ pð0Þ þ
Z t

0

ApðsÞds: ð17Þ

This expression fully specifies p(t) once one sets p(0), and

specifies the direct integration solution.

While spectral expansion is the most common approach

to solving ME problems, numerical approaches more

closely tied to a solution of the form of Eq. 17 are fre-

quently used. For example, integration of the ME can be

achieved by Monte Carlo methods [64–67]. This approach

appears to be good at simulating very complex dynamics

of large systems, but can be very slow to converge. Monte

Carlo integration does not require the energy graining of

the ME.

Direct numerical integration is also used to solve ME

problems [68–71]. A numerical integrator is used to find

the time-dependent solution to Eq. 2 via Eq. 17. The stiff

nature of the ME matrix (with eigenvalues spanning many

orders of magnitude) usually mandates using integration

techniques specifically designed for stiff problems [72, 73].

Stiff integrators commonly implement predictor–corrector

algorithms, with the correction involving a root finding

operation. The root finding is achieved by a form of

Newton’s method, requiring matrix inversion. The required

inverse turns out to be

I � cðtÞJ½ ��1 ð18Þ

where I is the identity matrix, c(t) is a scalar and J is the

Jacobian (matrix of derivatives) of the right hand side of

the ODE. In the constant coefficient, linear case of Eq. 2,

the Jacobian is simply the ME matrix A. Integration of the

ME requires the calculation of many matrix-vector pro-

ducts [to give dp(t)/dt] and solving many linear systems of

equations [to give the inverse given in Eq. 18 for the cor-

rection step].

Such integrations with a stiff integrator work very well,

even in difficult cases. Direct integration of the ODE

(implemented in double precision) has been found to be

successful even when the ME is being solved under low

temperature and pressure conditions so that spectral

methods implemented in double precision fail. Direct

integration does not suffer when the populations being

modelled span many orders of magnitude (even a greater

range than the available precision range) as large relative

errors in the very small elements of p(t) do not contaminate

the larger elements, unlike in the projection onto the

eigenvector basis of spectral methods. Even the Newton’s

method used as the corrector is tolerant of errors in the

calculation of the required inverse. However, the robust-

ness of the method comes at the price of a substantially

larger amount of computational effort necessitated by the

repeated matrix inversion in Eq. 18.

Fig. 2 Eigenvectors corresponding to the smallest eigenvalue for an

ethane decomposition problem at 300 K. The three vectors labelled x,

y and h represent, respectively, the eigenvectors of the original ME

matrix A, the symmetrised version SAS-1 and the transpose AT. The

‘‘eigenvector’’ calculated by applying the double precision Lapack

routine dsyev [58] to the symmetrised matrix is shown dashed line,

with the double precision unit roundoff indicated
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Direct integration has a number of other attractive fea-

tures. Second-order bimolecular reactions (that is, those in

which it is not assumed that one of the reactants is in large

excess and all populations are modelled explicitly) can be

easily included. The EGME can be integrated equally in its

symmetrised or asymmetric forms. The latter is important in

the case of non-conservative descriptions of isomerisations,

in which one cannot easily define a Boltzmann population

with which to form the S matrix that symmetrises A. A

disadvantage, however, is that for every change in the initial

population p0 the entire calculation must be repeated; a

spectral solution allows a simple projection and analytic

propagation for any number of initial distributions, once the

demanding diagonalisation step has been completed.

3.3 Transient populations

In general, a non-equilibrium initial population p0 will

relax to the long-time steady state of a single exponential

decay, pðtÞ / ek1tx1; whether reaction takes place (k1 \ 0)

or not (k1 = 0). The manner of that relaxation, though

often short-lived, reveals many important details of the

energy transfer within the gas and the microscopic reaction

rates. Successfully modelling these transient populations

between initiation at p0 and steady state at ek1tx1 is

essential in many applications, particularly in fitting to high

accuracy experimental data.

At high temperatures and pressures, a reasonable range

of times can usually be modelled by a very small number of

eigenpairs in a spectral solution. There is usually about this

number of eigenvalues separated at the small end of the

spectrum. As the temperature and, in particular, the pres-

sure of the system is reduced, collisional reactivation of

stabilised population becomes more important, and more

and more eigenpairs need to be added to the expansion to

model chemically interesting times. In the absence of other

information, it is usually not clear how many eigenpairs are

required to give accurate population profiles for a satis-

factory range of times without actually varying the number

of eigenpairs used in the expansion of Eq. 9. Equation 16

can be used as a guide only. These considerations do not

apply to direct integration approaches, as determining long-

time behaviour requires that all shorter time behaviour be

modelled accurately first.

It is worth pointing out that the populations calculated

by Eq. 8 are the solution to an initial value problem and

inherently model pulsed conditions. That is, at time t = 0 a

particular initial population of reactant p0 is created ‘‘as if

by magic’’ (though presumably through some finite process

occurring at times t B 0) and is then left completely alone

to evolve according to the rules built into the ME. While

this description yields a lot of useful information regarding

the processes described by the ME which can be used in

many interesting situations, modelling conditions other

than pulsed conditions where reactants are created at t [ 0

may require explicit integration of external reactant fluxes,

much like the traditional treatment of chemical activation

reactions [1, 56]. Experimental measurements often

approximate pulsed conditions. However, frequently one

cannot know exactly what initial population is appropriate

to model any particular ‘‘pulsed’’ experiment, unless the

process creating or measuring the initial population is

significantly faster than all of the processes being modelled

by the ME so that the population is effectively created or

measured instantaneously. The reactive processes being

modelled perturb the nascent population. Thus, the

expected population p0 is never present in the experiment,

and the time-dependent population p(t) calculated from it is

slightly perturbed from the population that would be cal-

culated from the population actually present once the initial

population creation process has completed. This is repre-

sented schematically in Fig. 3. The impact of this effect on

the interpretation of a ME calculation is usually negligible

compared to other approximations inherent in the ME

treatment unless tc, the timescale of the population creation

process, is particularly large. Clearly these interpretation

issues do not effect results such as the unimolecular rate

constant, where initial populations are not involved.

4 Unimolecular dissociation: the smallest eigenvalue,

pseudo-steady-state rate constant

The magnitude of the smallest eigenvalue of the ME has

traditionally been the quantity of most interest to

Fig. 3 Schematic representation of the initiation of a ‘‘pulsed’’

experiment with an initial population creation process that occurs

over a finite time tc, not significantly faster than the reactive processes

modelled by the ME. The expected population p0 is never achieved in

the experiment due to reaction of the nascent population. ME

modelling using p0 as the initial population therefore solves a

‘‘nearby’’ problem
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researchers due to its ready interpretation as the classical

unimolecular rate constant ku. Though various methods

have been used over the years to calculate this eigenvalue,

the Nesbet method has come to dominate the field due to its

superior performance.

4.1 Nesbet’s method

In 1965, Nesbet [12] proposed a method for calculating the

lowest eigenvalue and corresponding eigenvector of a

Hamiltonian matrix. In 1978, Gaynor et al. [11] adapted

Nesbet’s original method to the present case of finding the

smallest eigenvalue of the ME matrix. The adapted algo-

rithm in explicitly energy-grained form was given in later

papers, such as Gilbert et al. [74].

The basic Nesbet algorithm can be derived in a number

of ways, such as a gradient-type search of the Rayleigh

Quotient surface. While such derivations lead to insights

into the convergence of the method to the eigenpair with

the desired extremal eigenvalue, the intent of the method is

more clearly demonstrated as an iteration to minimise the

residual vector.

From any trial vector ~x one can estimate a correspond-

ing eigenvalue estimate ~k; for example through a Rayleigh

Quotient (neglecting, for the time being, any numerical

difficulties). The corresponding residual is given by

r ¼ A~x� ~k~x ¼ ðA� ~kIÞ~x: ð19Þ

If ~k was the actual eigenvalue of A, and the r = 0 solution

of Eq. 19 was found exactly, the corresponding eigenvector

of A would be given accurately by adding the solution

vector to ~x: If instead one uses the eigenvalue estimate ~k
and solves for r = 0 approximately using inverse of the

trivially invertible diagonal of the diagonally dominant

matrix A as an approximation to the true inverse, a better

eigenvector estimate is obtained by adding the approximate

r = 0 solution to ~x: If one then accurately updates ~k from

the updated ~x; ~k converges monotonically to the desired

extremal eigenvalue [11, 12].

In the case of the lowest eigenvalue being small the

matrix–vector product Ax cannot be formed accurately, so

the Rayleigh Quotient cannot be used for ~k: Fortunately, an

alternate way of calculating the eigenvalue estimate is

available. Decomposing A into a conservative collisional

part and purely reactive part A = C - K, with K = diag(ki),

by summing over the eigenpair relation Ax = kx, we have

X
j

ðAxÞj ¼
X

j

X
k

Cjkxk � kjxj

 !
¼ �

X
j

kjxj ¼ k
X

j

xj

ð20Þ

as
P

j

P
k Cjkxk ¼ 0 due to the conservative nature of the

collisional transfer process. Hence, provided
P

j xj 6¼ 0;

k ¼ �
P

j kjxjP
j xj

ð21Þ

giving the eigenvalue as a weighted average of the eigen-

vector. Any representation of the eigenvector such as the

symmetrised version Sx or the ‘‘regularised’’ version

h = S2x yields equivalent versions of the expression for k
by simple substitution in Eq. 21. These expressions for the

eigenvalue are not subject to destructive cancellation errors

unless
P

j xj (or its equivalent) is small. In practice it is

found that
P

j xj is not small for the desired eigenvector

corresponding to the smallest eigenvalue.1

The Nesbet update can be applied sequentially, calcu-

lating an update to a single element of ~x before updating ~k
and moving on, or simultaneously for all elements with a

constant ~k: The latter is more in tune with modern

approaches and easier to implement. Any difference in the

speed of convergence is immaterial, as the entire calcula-

tion converges extremely quickly.

Gaynor et al. [11] made a number of other adaptations in

an attempt to minimise the effect of roundoff error. Really,

these adaptations are not important. The success of the

method in difficult low temperature and pressure cases

does not rely on any small increase in accuracy in the

calculated residual. The calculated residual will still be

completely inaccurate as the true residual gets small, a

situation that occurs regularly as the Nesbet method is

capable of calculating eigenpairs to high accuracy. The

success of the method lies in the fact that the method is a

single-vector update iteration: the correction calculated

from the residual is added to the existing vector. Any

inaccurate update elements will be orders of magnitude

smaller than the elements that they are being added to,

having no significant detrimental impact on the accuracy of

elements that yield a small residual.

For unimolecular reactions with more than one product

formed the Nesbet method gives the long-time population

and total rate of reactant loss. The unimolecular reaction

rate for each channel is simply calculated after the relevant

eigenvector has been determined by inserting the channel’s

microscopic rate constants into Eq. 21.

1 Equation 20 shows that when K = 0 (the pure relaxation case)

either k = 0 or
P

j xj ¼ 0: In this K = 0 case the smallest eigenvalue

is zero so that
P

j xj need not be (indeed the normalisation of x and its

strictly positive character imply a large value for the sum). This sum

must be zero for the remaining set of eigenvectors with non-zero

eigenvalues which control pure relaxation to equilibrium. The

reactive K = 0 case can be seen as a perturbation to the pure

relaxation case and changes the sum of the eigenvector elements only

a small amount, yielding a small sum calculated from differences

between large numbers, a classic candidate for catastrophic cancel-

lation. Subsequently the calculation of all but the smallest eigenvalue

from the corresponding eigenvector through these weighted average

expressions is unstable.
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4.2 Other methods

While the Nesbet method is, for good reason, the dominant

method used for finding the smallest eigenpair of a uni-

molecular reaction problem, other methods are used. In the

unimolecular case the most notable of these is the David-

son method [75]. The Davidson method can be viewed as

an attempt to speed the convergence of the Nesbet method

by not discarding residual information after each iteration.

Instead, each Nesbet update vector is added to a basis for a

subspace, defining an orthogonal subspace projection

method [76, 77].

When they work, the Davidson and the closely related

Olsen [78] methods converge in a smaller number of

iterations than the Nesbet method, particularly when the

initial eigenvector estimate is far from the actual eigen-

vector. However, the method is not a single-vector

update iteration. A small eigenproblem must be solved

and a larger matrix–vector product is required at each

step to form the eigenvector estimate. As such the

Davidson and Olsen methods are far more prone to the

ravages of roundoff error than the Nesbet method,

meaning that difficult low temperature and pressure cases

with small eigenvalues and small eigenvector elements

cannot be accurately solved with the Davidson or Olsen

methods.

Krylov subspace methods (the Lanczos method in the

symmetric case, generalised in the Arnoldi method [76, 77,

79, 80]) are orthogonal projection methods in which the

subspace grows from a seed vector v as Am-1v at the mth

iteration. These general methods suffer from similar inac-

curacies for small eigenvalues as the Davidson and Olsen

methods. However, Frankcombe and Smith [27] have

demonstrated that small eigenvalue sensitivity can be

returned to the Krylov subspace methods by applying a

weighting to the inner product space the method works in.

The resulting method is known as a weighted inner product

subspace projection (WIPSP) method. It can be demon-

strated that applying the Lanczos method to the symmetr-

ised matrix SAS-1 is applying a WIPSP method, and doing

so allows one to solve a wider range of problems than

trying to diagonalise the raw A. Diagonalising AT is even

better, weighting the population vector space so all ele-

ments of the desired eigenvector are of order unity (cf.

Fig. 2) [27].

4.3 Transient populations

Transient evolution of the population can be important in

modelling unimolecular reactions. Spectral (Eqs. 8–12)

and direct integration methods (Eq. 17) can be equally

applied to calculating the time-dependent populations that

reveal transient behaviour.

While appropriate methods will be mainly described in

the following section on isomerisation reactions (where

transient behaviours take on a far more central role), we

here mention in passing one class of methods that are not

applicable to reversible isomerisation reactions. These are

generalisations of the Nesbet method for finding eigen-

vectors corresponding to interior eigenvectors. Two

examples are the high-order Nesbet eigenvectors (HONE)

and explicitly restricted subspace (ERS) Nesbet methods

[28, 57]. These start with low-quality spectral data from a

standard eigensolution method and use special properties

of the Nesbet iteration to refine the eigenvectors to a level

at which they become sufficiently accurate to perform

meaningful modelling of transients at medium to long

times.

5 Isomerisation reactions

5.1 General considerations

Virtually all of the considerations for solving a unimolec-

ular ME apply to an ME describing a reversible isomeri-

sation, or a series of reversible isomerisations and

irreversible decompositions. For some applications a single

eigenpair describing the long-time evolution of the system

is all that is required. However, generally one wants more

detail of the evolution of the system in time, meaning a

larger set of eigenpairs are needed. There are usually

multiple small eigenvalues describing behaviour occurring

on long time scales so that a single eigenpair is often

insufficient to model even reasonably long times. There is

usually one small eigenvalue for each reactive barrier

between wells, and which of these eigenpairs one is

interested in is critically dependent on what information

one is trying to extract from the ME (i.e. complex inter-

species relationships resolved in time or simply a single

rate constant for a particular process) [34, 81]. In any case,

an efficient algorithm analogous to the Nesbet method has

not been developed for multi-well MEs, which do not

exhibit the strong diagonal dominance of the unimolecular

ME matrix.

The matrices for multi-well MEs are well structured.

While the order of the species elements within the total

state space p(t) is arbitrary, certain orderings lead to more

obvious structure in the matrix and assist in implementing

packed storage schemes. One of the more obvious order-

ings is to concatenate the state spaces from each individual

well, with the grains arranged in ascending energy within

each well. This ordering leads to a blocked ME matrix with

dense blocks on the diagonal and diagonal matrices for the

off-diagonal blocks. An example of the matrix structure for

the reaction scheme
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A� B

A� C

A� D

C� D

ð22Þ

with this element ordering is shown in Fig. 4. The block

structure of the matrix is clear.

It should be noted that the symmetrisation of the ME,

taken for granted in the unimolecular case, can similarly be

effected for the multi-well ME. An important detail is that

the vector f from which to construct the symmetrising

transformation SAS-1 = (SAS-1)T must be normalised in

sections to reproduce the overall Boltzmann distribution,

obeying the relevant equilibrium constants K ¼ ½B�=½A� ¼P
i2B fi=

P
i2A fi: These K are derived from the microscopic

rate constants.

Clearly, the matrix represented in Fig. 4 contains large

regions whose elements are zero. Using packed storage

(storing only non-zero parts of the matrix and constructing

matrix-vector products component-wise) is very attractive

when solving large multi-well MEs. The percentage of the

matrix that is identically zero increases dramatically with

the number of species being modelled.

5.2 Approaches to the solution in the isomerisation

case

While the considerations for calculating the solution of the

ME are similar for unimolecular and multi-well MEs, the

ranges of possible behaviours of p(t) are not. The modelled

population for the unimolecular problem simply relaxes

towards equilibrium, with some possible adjustment due to

depletion at high energies from reaction. The behaviour of

the populations of multi-well systems, on the other hand, is

difficult to predict. Multi-well systems can move through a

number of steady state-like regimes at different times and

energies. Populations at different energies, or of different

isomers, can take on a steady-state character at different

times. These steady-state behaviours are the basis of direct

inversion methods of solving the ME [30, 35, 82–84]. At

long times a steady state will generally emerge over the

whole of the state space. This final long-time state is

similar to the long-time state of the unimolecular ME.

Like unimolecular MEs, how difficult the multi-well

ME is to solve numerically is dependent on the conditions

being modelled. One of the main guides to the difficulties

that will be encountered can be obtained by examining the

combined Boltzmann vector, f. For low-temperature

problems, the elements of this vector corresponding to high

energies will be small. The existence of elements within a

few orders of magnitude of the prevailing numerical pre-

cision indicates that numerical difficulties are likely in a

spectral solution.

For small to medium sized, well-behaved problems at

not too low temperatures and pressures, standard eigenso-

lution routines in double precision [14, 58] can be used to

calculate the spectral expansion, without taking any par-

ticular notice of the structure of the spectrum or the

eigenvectors. Direct diagonalisation methods such as the

QR method can be used in moderately sized cases, though

this method scales badly and requires explicit storage of the

matrix.

For larger problems, or when packed storage is used,

iterative methods relying on the matrix–vector product

must be used. While subspace projection methods [27, 76,

77, 79, 80] are popular generally for finding extremal

eigenpairs of large matrices in a scalable manner, the nature

of the spectrum and desired eigenvectors of multi-well ME

matrices means that convergence can be extremely slow, or

may stagnate completely. Furthermore, catastrophic loss of

precision is common in low temperature and pressure

cases.

If the temperature or pressure is too low to allow

accurate spectral decomposition, direct integration of the

ODE can be used. However, direct integration with off-

the-shelf stiff integrators scales with the third power of the

system size so that large networks of isomers cannot be

modelled with a reasonable computational effort. For a

modification to the standard stiff integrator that is scalable

for large networks of isomers, see Sect. 7.

5.3 Solving the eigenproblem: the diffusion

approximation

Vastly superior convergence of Krylov subspace-based

methods can be achieved by implementing a shift

and invert transform. The eigenvectors of the matrix

A B

A C

A D C D

B A

C A
D A

D C

Fig. 4 Structure of a four-well isomerising system. Non-zero

elements shown in black. Interconversion rate constants labelled

with the reaction they represent
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(A - rI)-1 are identical to those of A, with the eigenvalues

transformed according to 1/(k - r). A small or zero r
transforms the desired small eigenvalues to large and well-

spaced eigenvalues, a regime in which the Krylov subspace

methods perform best. Note that the existence of a zero

eigenvalue in the conservative ME means r must be set

non-zero in that case, to avoid attempting to invert a sin-

gular matrix.

To implement the shift and invert technique in a scalable

manner requires that

ðA� rIÞ�1v; ð23Þ

for arbitrary v, be calculated quickly. For a dense matrix

finding (A - rI)-1 is an operation that scales with n3,

reducing the practicality of the shift and invert technique.

A more tractable approach can be found if the diffusion

approximation is applied to the collisional processes. This

changes the ME that is being solved, but in many cases the

approximation is a small one. With the diffusion approxi-

mation the CET part of the ME matrix is reduced to tri-

diagonal form. If the elements in p(t) are ordered so that

the elements from all the isomers corresponding to the

same energy are together,2 the matrix becomes banded

[32]. The bandwidth (not including the main diagonal) is

the same as the number of isomers.

The calculation of (A - rI)-1v for a banded matrix A

can be performed much more quickly and scalably than for

a dense matrix. A Cholesky (GGT), LDLT or non-sym-

metric LU factorisation of a banded matrix of order n and

bandwidth p requires computational effort of the order of

np2. The matrix needs only to be factorised once and once

factorised, calculating the product of the inverse of the

matrix and an arbitrary vector is of the order of np, giving

the fast inverse required to allow efficient use of a shift and

invert strategy. The speed and accuracy of this method has

been demonstrated by Gates et al. [32].

A minor complicating issue is what type of factorisation

to use. As the factorisation needs to be performed once

only, the difference in the speed of the factorisation is

overshadowed by accuracy and stability considerations,

which favour the Cholesky factorisation if symmetry is

used explicitly. The basic LU factorisation is the most

robust if one is willing to abandon symmetry altogether.

The LU factorisation does not depend on the definiteness of

the matrix and so is stable at low temperatures and allows

the spectrum to be shifted in order to focus on interior

regions.

6 Time-dependent evolution in complex-forming

bimolecular reactions

Certain classes of bimolecular reactions can also be mod-

elled using ME methods [25]. A ME approach is relevant

when the dynamics of the reaction are significantly influ-

enced by unimolecular processes. This is the case when

bimolecular species come together to form a unimolecular

intermediate or a long-lived collision complex that behaves

like a unimolecular species.

6.1 Linearised bimolecular channels

The most basic way to treat such a reaction is to model the

bimolecular reaction as an irreversible source term in a

traditional chemical activation ME [1]. The unimolecular

or multi-well part of the reaction is treated in isolation to

calculate the eigendecomposition. The bimolecular source

term is added at the projection and propagation stage of the

calculation, either approximately or by explicit integration

[1, 56].

This approach to bimolecular reactions with a long-lived

unimolecular intermediate is limited to modelling reactions

whose bimolecular parts have a predetermined time

dependence, such as an unchanging infinite source. A more

satisfying and flexible approach is applicable under

pseudo-first-order conditions [39]. The total time-depen-

dent populations of two species A and B undergoing the

reaction

Aþ B� C ð24Þ

with reactant B in excess are then described by the

equations

d½A�
dt
¼ �kA!C½A�½B� þ

X
i

kC!A
i ½C�i

¼ �bkA!C½A� þ
X

i

kC!A
i ½C�i ð25Þ

where bkA!C ¼ kA!C½B�; ½C�i is a species element

describing the energy-grained population of species C

and kC!A
i is an appropriate microscopic rate constant for

the dissociation reaction. The pseudo-first-order conditions

give

d½B�
dt
� 0 ð26Þ

making bkA!C a constant and Eq. 25 a linear differential

equation. By assuming that the reactant not in excess

remains thermally distributed, the population of the

bimolecular state can be incorporated into a linear first-

order system of differential equations of the form of Eq. 2

by adding a single species element to p for the bimolecular

state ([A]). One row and column is added to the ME matrix

2 A suitable ordering from the example of Fig. 1 is p5, p1, p6, p2,

p7,…
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A. The elements of the additional row of the matrix A

corresponding to the bimolecular state are comprised of

kC!A
i and �bkA!C terms to reconstruct Eq. 25. The corre-

sponding additional column is constructed of bkA!C
i terms

(the splitting of bkA!C into each energy level of species C,P
i
bkA!C

i ¼ bkA!C), describing the gain in the population of

C. An additional �kC!A
i term appears on the diagonal of

the matrix to account for dissociation from the unimole-

cular state (retaining the zero column sum property for this

conservative ME matrix).

The kC!A
i terms can be readily calculated from tem-

perature-dependent rate data by inverse Laplace Transform

techniques [85]. The detailed balance condition is

bkA!C
i f A ¼ kC!A

i f C
i ð27Þ

where f i
C describes the Boltzmann distribution of the

unimolecular species normalised against the bimolecular

population f A according to the equilibrium constant K for

the reaction,

K ¼
X

i
f C
i

.
f A½B�: ð28Þ

6.2 Irreversible product channels

In the reversible isomerisation case of Sect. 5, different

portions of the Boltzmann vector for the whole system f

were normalised separately to satisfy the various equilib-

rium constant ratios. When bimolecular channels are added

the same procedure is used, with the element of f

describing the bimolecular state given by a ratio such as

Eq. 28. The overall normalisation of f is once more arbi-

trary, usually giving kfk ¼ 1 for some appropriate norm.

Symmetrisation of the matrix is achieved with the usual

transform derived from the inverse square root of elements

of f. This presents no problems for conservative systems

with fully reversible pseudo-first-order bimolecular chan-

nels as the elements of f are well-defined and non-zero.

On the other hand, modelling irreversible bimolecular

reactions is not so straight forward [22, 23]. While the

linear system of differential equations can be formed in all

cases, a ME including irreversible reactions to explicitly

included states yields an equilibrium distribution f with

zero elements (as in the long-time limit the reaction pro-

ceeds to completion, depleting at least one of the species),

so that the inverse square root is undefined. While the

eigenproblem could still be solved in asymmetric form, the

matrix S—undefined in this fi = 0 case—is still required to

apply the projection theorem in order to calculate the

projection coefficients for the spectral propagation.

One option for dealing with this is to include the reac-

tion as though it were reversible and setting the fictitious

equilibrium constant sufficiently favouring products so that

the reverse reaction does not contribute significantly.

Careful testing of the effect of the false equilibrium is

required in this case.

A second option is not to explicitly include the

irreversible states in the modelled state space, as in the

traditional unimolecular dissociation case. The various

parts of the equilibrium vector f can then be normalised

appropriately, ignoring the irreversible reactions. The non-

conservative system can then be solved normally. To cal-

culate the irreversible product populations after propaga-

tion, one can apply either conservation of population for a

single irreversible product, or explicit integration of the

time-dependent flux:

PirrevðtÞ ¼
Z t

0

X
i

kipiðsÞds ð29Þ

where Pirrev(t) is the desired product population, pi(s) is the

population modelled by the ME and ki are appropriate

microscopic rate constants for the irreversible reaction.

6.3 Solving the ME

Solving the eigenproblem for MEs including bimolecular

channels is very similar to solving the underlying uni-

molecular or isomerisation problem. In particular, applying

the diffusion approximation yields a matrix which can be

well packed and quickly inverted. If the grains describing

the thermalised bimolecular states are appended to the end

of the state space describing the unimolecular system,

applying the diffusion approximation and ordering the

elements within the unimolecular system appropriately

(Sect. 5) yields a banded arrowhead matrix. The structure

of the main part of the matrix retains the banded form of

the unimolecular or isomerising system without the bi-

molecular channels, while the bimolecular states add

non-zero rows and columns on the bottom and right of

the matrix. Without pivoting, factorising such a banded

arrowhead matrix maintains the arrowhead structure of the

factors, again yielding a fast inverse to allow shift and

invert iterative methods to be applied [22].

We finish this section by once more mentioning

numerical integration of the ODE associated with the dis-

cretized ME. Clearly there is no significant theoretical

difference between integrating the MEs for unimolecular

dissociation or isomerisation reactions, multi-well systems

and linearised collision complex-forming bimolecular

reactions, as they are all described by the same linear first-

order ODE, Eq. 2. Numerical integration indeed works

well. One advantage that numerical integration has over

spectral methods is that it does not rely on the linear nature

of the ODE. MEs including bimolecular channels can be

numerically integrated without invoking pseudo-first-order

conditions. While numerical integration of bimolecular
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reactions is common when integrating complex reaction

schemes, the authors are unaware of published work inte-

grating non-equilibrium populations in the context of a ME

describing a second-order bimolecular system.

When direct integration is used to solve the ME, the

advantages of working with the symmetrised ME are

considerably reduced. Unlike in the spectral solution case

the matrix S is otherwise unneeded. Hence, causing S to be

undefined by including irreversible channels in the ME

explicitly can be handled gracefully using numerical inte-

gration of the ODE.

7 Recent developments in scalable solutions

for multi-well MEs

In a recent paper, the current authors directly compared

three methods for solving a particular multi-well ME:

spectral solution with a direct diagonalisation routine,

spectral solution with a shift and invert Lanczos iterative

diagonalisation, and direct numerical integration with a

stiff integrator [63]. It was found that at high temperatures

the Lanczos diagonalisation was the fastest, but the

requirement of high precision at low temperatures and

pressures made numerical integration favourable in that

regime.

The problem with all three methods is scaling; all scale

as n3 as the number of isomers being modelled increases.

Thus, one cannot solve truly large problems with these

methods as they stand.

7.1 Scalable linear system solves

Both the shift and invert Lanczos and direct integration

methods require forming matrix–vector products Av—

which scales linearly with the number of isomers if

implemented correctly—and finding solutions to linear

systems of equations of the form of

ðaAþ bIÞx ¼ b ð30Þ

(from Eqs. 18 and 23). Solving Eq. 30 for x through a

factor and backsolve method is the source of the n3 scaling

in these methods. A scalable way of solving Eq. 30 would

yield overall scalable methods.

One such scalable method is the GMRES method [86,

87]. GMRES builds the solution to Eq. 30 in a Krylov

subspace that requires only (aA ? bI)v = aAv ? bv to

build. These matrix–vector products can be formed in

linear-scaling time, as the most onerous part is forming Av.

However, GMRES applied to Eq. 30 for multi-well ME

matrices converges extremely slowly, due to the large

spread of the eigenvalues of (aA ? bI). A standard tech-

nique to apply in that scenario is preconditioning. One

requires an easily inverted approximation to (aA ? bI)-1

to use as a preconditioner. An astute reader may realise we

have pointed out in Sect. 5.3 that the diffusion approxi-

mation matrix D is a good approximation to A, and that it is

easily invertible. As pointed out in Sect. 6.3, including

bimolecular channels turns the diffusion matrix into a

banded arrowhead matrix, which is again easily invertible

in linearly-scaling time. The preconditioned version of

Eq. 30,

ðaDþ bIÞ�1ðaAþ bIÞx ¼ ðaDþ bIÞ�1b; ð31Þ

is much easier to converge with the Krylov-based GMRES

iteration due to the small spectral width of ðaDþ
bIÞ�1ðaAþ bIÞ � I: ðaDþ bIÞ�1b is easily formed and

the GMRES iteration requires only

ðaDþ bIÞ�1d ð32Þ

with

d ¼ ðaAþ bIÞx ð33Þ

at each iteration. All of these components can be evaluated

in linear-scaling time, yielding an overall linear-scaling

GMRES solution method.

7.2 Linear-scaling shift and invert Lanczos and direct

integration

Inserting the linear-scaling preconditioned GMRES itera-

tive solution of Eq. 30 in place of the dense solves in the

shift and invert Lanczos and direct stiff integration meth-

ods has proven very successful [62, 88]. The solutions

produced by the GMRES-based methods are practically

indistinguishable to those produced by these two methods

with direct factor and solve dense system solves. The near-

perfect linear scaling of the GMRES-based direct integra-

tion has been explicitly demonstrated for up to 12 isomers

[88].

The agreement between the dense-solve and GMRES-

solve versions of these two methods mean that these linear-

scaling methods inherit the advantages and disadvantages

of the two methods. Direct integration with a GMRES-

based inversion is a very robust method, successfully

integrating initial populations under the most extreme

conditions tested: 300 K and 130 Pa [88]. The shift and

invert diagonalisation procedure in double precision is

significantly faster than the direct integration method.

However, this is only reliable at relatively high tempera-

tures and pressures. At lower temperatures and pressures,

the method quickly loses accuracy due to the effects of

finite precision algebra. As with direct diagonalisation to

find the spectral solution [23, 28, 59, 63], implementing the

entire shift and invert Lanczos algorithm in sufficiently

high precision arithmetic allows the ME solution to be
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found accurately at any desired temperature and pressure

[62, 63]. As usual, such an approach comes at the cost of

substantially increased execution time (but at the same

scaling of the algorithm).

These trends are illustrated in Fig. 5. This figure shows

the CPU time required to solve a representative 1CH2 þ
C2H2 � C3H4 ! C3H3 þ H ME, where the C3H4 species

exists as three inter-converting isomers. When double

precision GMRES-based shift and invert Lanczos is suffi-

cient to solve the problem, it does so in the fastest time.

However, as the temperature is reduced the Lanczos cal-

culation must be performed in higher and higher precision,

at a substantial cost in CPU time. The GMRES-based direct

stiff integration algorithm solved the problem in a similar

amount of CPU time irrespective of the temperature;

indeed a trend towards shorter execution times for lower

temperatures is evident. For robustness, reasonable speed

and scalability, direct integration is attractive [62, 63, 88].

It should be pointed out that coupling GMRES-based

inversions and stiff integration has been applied previously

in other contexts (see [89] and references therein). The

authors were unaware of this work when developing these

GMRES-based ME solution methods [62, 88].

8 Outlook

Methodology for the solution of the ME has developed

significantly in recent years, with particular emphasis on

extending the formalism to allow for effective modelling of

more complex unimolecular and bimolecular reactions

involving multiple isomeric species. While the formulation

of the multi-isomer problem is relatively straightforward

and a number of examples of such studies exist in the

literature [22, 24, 29, 30–38], finding the solution to the

ME presents considerable numerical challenges. These

challenges revolve around the fact that standard eigen-

solver routines and spectral decompositions can suffer from

catastrophic loss of precision due to the properties of the

ME matrix. Furthermore, standard methods will not admit

extension to large problems due to their poor scaling

properties. This causes one to turn to a number of iterative

methods typically utilised for large sparse matrix

applications.

Many of the standard iterative methods fail for the ME

because of the numerical error issues highlighted above.

The drive towards general and robust ME simulation pro-

grams necessarily involves the development of specially

tailored algorithms which are both scalable and do not

suffer catastrophic (or insidious) failure in the presence of

ill-conditioning in the matrix at lower temperatures.

Recent developments exploiting existing approxima-

tions have yielded specialised methods capable of solving

ME problems, variously overcoming both loss of precision

and poor scaling to large problems [23, 27, 28, 62, 63, 88].

Both rigorous and fast solution methods can now be a part

of the kineticist’s arsenal as the essential chemistry of

elementary reactions is interfaced with the more global

modelling of combustion and atmospheric environments.
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